Logique Des Prédicats Exercices

Achat Maison Pont L Abbé
August 1, 2024

$ est(chargeur, branché) \to est(tempete, bretagne)$ Exercice 2 Représenter les connaissances suivantes avec les connecteurs logiques: p sinon q p à moins que q p autrement q Il suffit que p pour q Il est nécessaire que p pour q p seulement si q p si q Exercice 3 Représentez à l'aide de la logique des prédicats les informations suivantes: Chaque chien a mordu au moins un facteur. Tous les étudiants sont venus au cours d'IA. Tous les étudiants ont testé toutes les boîtes. Solution exercice 3 1: $ \forall x, \exists y, est(x, chien) \land est(y, facteur) \to aMordu(x, y)$ 2: $ \forall x, est(x, etudiant) \to aAssisté(x, coursIA)$ 3: $ \forall x, \forall y, est(x, etudiant) \land est(y, boite) \to aTesté(x, y)$ Réseaux sémantiques Exercice 4 Représentez les connaissances suivantes par des réseaux sémantiques: 1a. Le pull d'Alyssa est bleu. Le pull de Bernadette est gris. 1c. Alyssa et Bernadette sont des personnes. Bleu et Gris sont des couleurs. Logique des predicates exercices pour. Shazia est plus petite qu'Arnaud. Shazia qui fait 1.

  1. Logique des predicates exercices les
  2. Logique des predicates exercices pour

Logique Des Predicates Exercices Les

Carrés et sommes Voici quelques propositions: Toute somme de deux nombres réels a pour carré la somme des carrés de ces deux nombres. Pour tous réels $x$ et $y$, si $x^2 = y^2$ alors $x = y$. Logique des prédicats Exercices corrigés. Pour chacune de ces propositions: La traduire à l'aide de quantificateurs et de prédicats. Construire la négation à l'aide de quantificateurs et de prédicats. Dire si la proposition originale est vraie ou fausse, et confirmer en étudiant la négation. Christophe Gragnic, le 21/07/2019, 11h06'22".

Logique Des Predicates Exercices Pour

Égalité Soient $x$ et $y$ des nombres. Dire si les propositions suivantes sont vraies ou fausses. $P$: « $\exists x, \exists y, y = x$ » $Q$: « $\exists x, \forall y, y = x$ » $R$: « $\forall x, \exists y, y = x$ » $S$: « $\forall x, \forall y, y = x$ » 2. Double et moitié On rappelle que $\mathbb R$ et $\mathbb Z$ sont respectivement l'ensemble des nombres réels et l'ensemble des nombres entiers relatifs. 1) Si on écrit $y = 2x$, quel nombre est le double de l'autre, quel nombre est la moitié de l'autre? Même question avec $y = \frac{1}{2} x$. 2) On considère la proposition $P$: $$\forall x \in \mathbb R, \exists y \in \mathbb R, y = \frac{1}{2} x$$ a) $P$ est-elle vraie? Pourquoi? b) Énoncer $\neg P$. Dire si $\neg P$ est vraie. Justifier de deux façons. 3) On considère la proposition $Q$: $$\forall x \in \mathbb Z, \exists y \in \mathbb Z, y = \frac{1}{2} x$$ a) $Q$ est-elle vraie? Pourquoi? Logique des predicates exercices simple. b) Énoncer $\neg Q$. Dire si $\neg Q$ est vraie. Justifier de deux façons. 2. Valeur et négation $\forall x \in \mathbb R, \exists y \in \mathbb R, x^2 + y < 0$ $\exists y \in \mathbb R, \forall x \in \mathbb R, x^2 + y < 0$ $\forall y \in \mathbb R, \exists x \in \mathbb R, x^2 + y < 0$ 2.

68 cm est plus petite qu'Arnaud qui mesure 1. 85 cm. Mehdi a prêté le livre « La Proie » écrit par M. Crichton à Marie. Mehdi, Marie et M. Crichton sont des personnes. Logique modale Exercice 5 Représentez les phrases suivantes à l'aide de la logique modale: Bruno croit que la ligne de tram T1 est en travaux. Mélanie sait que toutes les lignes de tram fonctionnent. Carole croit que tous les voyageurs savent que la ligne de tram T1 est en travaux Solution exercice 5 croit que la ligne de tram T1 est en travaux. $ \Diamond (bruno) etat(tramT1, enTravaux)$ En ajoutant une double négation: $ \lnot \lnot (\Diamond (bruno) etat(tramT1, enTravaux)) \Leftrightarrow$ $ \lnot (\Box (bruno) \lnot etat(tramT1, enTravaux)) $ ce qui donne 'On peut peut pas dire que Bruno sait que la ligne de tram T1 n'est pas en travaux. ' 2. Logique des prédicats (L2) : Solutions de quelques exercices. Mélanie sait que toutes les lignes de tram fonctionnent. $ \Box (melanie) \forall x, est(x, ligneTram) \to etat(x, fonctionne)$ Que l'on peut traduire en: $ \Box (melanie) \forall x, \lnot est(x, ligneTram) \lor etat(x, fonctionne)$ $ \lnot \lnot (\Box (melanie) \forall x, \lnot est(x, ligneTram) \lor etat(x, fonctionne) \Leftrightarrow$ $ \lnot \ (\Diamond (melanie) \exists x, est(x, ligneTram) \land \lnot etat(x, fonctionne)$ ce qui donne 'On peut peut pas dire que Mélanie croit qu'il existe une ligne de tram qui ne fonctionne pas. '

Sitemap | wwropasx.ru, 2024