Transformée De Fourier Python 8

Robe Couleur Chocolat Pour Mariage
July 31, 2024

1. Transformée de Fourier Ce document introduit la transformée de Fourier discrète (TFD) comme moyen d'obtenir une approximation numérique de la transformée de Fourier d'une fonction. Soit un signal u(t) (la variable t est réelle, les valeurs éventuellement complexes). Sa transformée de Fourier(TF) est: S ( f) = ∫ - ∞ ∞ u ( t) exp ( - j 2 π f t) d t Si u(t) est réel, sa transformée de Fourier possède la parité suivante: S ( - f) = S ( f) * Le signal s'exprime avec sa TF par la transformée de Fourier inverse: u ( t) = ∫ - ∞ ∞ S ( f) exp ( j 2 π f t) d f Lors du traitement numérique d'un signal, on dispose de u(t) sur une durée T, par exemple sur l'intervalle [-T/2, T/2]. D'une manière générale, un calcul numérique ne peut se faire que sur une durée T finie.

Transformée De Fourier Python Program

La transformée de Fourier permet de représenter le spectre de fréquence d'un signal non périodique. Note Cette partie s'intéresse à un signal à une dimension. Signal à une dimension ¶ Un signal unidimensionnel est par exemple le signal sonore. Il peut être vu comme une fonction définie dans le domaine temporel: Dans le cas du traitement numérique du signal, ce dernier n'est pas continu dans le temps, mais échantillonné. Le signal échantillonné est obtenu en effectuant le produit du signal x(t) par un peigne de Dirac de période Te: x_e(t)=x(t)\sum\limits_{k=-\infty}^{+\infty}\delta(t-kT_e) Attention La fréquence d'échantillonnage d'un signal doit respecter le théorème de Shannon-Nyquist qui indique que la fréquence Fe d'échantillonnage doit être au moins le double de la fréquence maximale f du signal à échantillonner: Transformée de Fourier Rapide (notée FFT) ¶ La transformée de Fourier rapide est un algorithme qui permet de calculer les transformées de Fourier discrète d'un signal échantillonné.

Transformée De Fourier Python Image

La durée d'analyse T doit être grande par rapport à b pour avoir une bonne résolution: T=200. 0 fe=8. 0 axis([0, 5, 0, 100]) On obtient une restitution parfaite des coefficients de Fourier (multipliés par T). En effet, lorsque T correspond à une période du signal, la TFD fournit les coefficients de Fourier, comme expliqué dans Transformée de Fourier discrète: série de Fourier. En pratique, cette condition n'est pas réalisée car la durée d'analyse est généralement indépendante de la période du signal. Voyons ce qui arrive pour une période quelconque: b = 0. 945875 # periode On constate un élargissement de la base des raies. Le signal échantillonné est en fait le produit du signal périodique défini ci-dessus par une fenêtre h(t) rectangulaire de largeur T. La TF est donc le produit de convolution de S avec la TF de h: qui présente des oscillations lentement décroissantes dont la conséquence sur le spectre d'une fonction périodique est l'élargissement de la base des raies. Pour remédier à ce problème, on remplace la fenêtre rectangulaire par une fenêtre dont le spectre présente des lobes secondaires plus faibles, par exemple la fenêtre de Hamming: def hamming(t): return 0.

Transformée De Fourier Python Programming

cos ( 2 * np. pi / T1 * t) + np. sin ( 2 * np. pi / T2 * t) # affichage du signal plt. plot ( t, signal) # calcul de la transformee de Fourier et des frequences fourier = np. fft ( signal) n = signal. size freq = np. fftfreq ( n, d = dt) # affichage de la transformee de Fourier plt. plot ( freq, fourier. real, label = "real") plt. imag, label = "imag") plt. legend () Fonction fftshift ¶ >>> n = 8 >>> dt = 0. 1 >>> freq = np. fftfreq ( n, d = dt) >>> freq array([ 0., 1. 25, 2. 5, 3. 75, -5., -3. 75, -2. 5, -1. 25]) >>> f = np. fftshift ( freq) >>> f array([-5., -3. 25, 0., 1. 75]) >>> inv_f = np. ifftshift ( f) >>> inv_f Lorsqu'on désire calculer la transformée de Fourier d'une fonction \(x(t)\) à l'aide d'un ordinateur, ce dernier ne travaille que sur des valeurs discrètes, on est amené à: discrétiser la fonction temporelle, tronquer la fonction temporelle, discrétiser la fonction fréquentielle.

0 axis([0, fe/2, 0, ()]) 2. b. Exemple: sinusoïde modulée par une gaussienne On considère le signal suivant (paquet d'onde gaussien): u ( t) = exp ( - t 2 / a 2) cos ( 2 π t b) avec b ≪ a. b=0. 1 return (-t**2/a**2)*(2. 0**t/b) t = (start=-5, stop=5, step=0. 01) u = signal(t) plot(t, u) xlabel('t') ylabel('u') Dans ce cas, il faut choisir une fréquence d'échantillonnage supérieure à 2 fois la fréquence de la sinusoïde, c. a. d. fe>2/b. fe=40 2. c. Fenêtre rectangulaire Soit une fenêtre rectangulaire de largeur a: if (abs(t) > a/2): return 0. 0 else: return 1. 0 Son spectre: fe=50 Une fonction présentant une discontinuité comme celle-ci possède des composantes spectrales à haute fréquence encore non négligeables au voisinage de fe/2. Le résultat du calcul est donc certainement affecté par le repliement de bande. 3. Signal à support non borné Dans ce cas, la fenêtre [-T/2, T/2] est arbitrairement imposée par le système de mesure. Par exemple sur un oscilloscope numérique, T peut être ajusté par le réglage de la base de temps.

Sitemap | wwropasx.ru, 2024