Propriétés Produit Vectoriel

Miss 18 Ans
July 31, 2024

Définition: Le produit vectoriel de \(\vec U\) et \(\vec V\) est le vecteur \(\vec W = \vec U \ \wedge \ \vec V\) tel que: \(|| \vec U \wedge \vec V || = ||\vec U||. ||\vec V||. |\sin \ (\vec U, \vec V)|\) \(\vec W\) est orthogonal à \(\vec U\) et à \(\vec V\) \(\vec U\), \(\vec V\) et \(\vec W\) forment un trièdre direct. Propriétés Antisymétrie: \(\vec U \wedge \vec V = - \vec V \wedge \vec U\) Bilinéarité: \(\vec U \wedge (\vec V + \vec W) = \vec U \wedge \vec V + \vec U \wedge \vec W\) Multiplication par un scalaire: \(k (\vec U \wedge \vec V) = (k \ \vec U)\wedge\vec V = \vec U \wedge (k \ \vec V)\) Remarque: Lien entre produit vectoriel et aire d'un parallélogramme La norme du produit vectoriel \(|| \vec U \wedge \vec V ||\) correspond à l'aire du parallélogramme défini par les vecteurs \(\vec U\) et \(\vec V\): \(|| \vec U \wedge \vec V || = ||\vec U||. |\sin \alpha| = ||\vec U||. h\) Avec les coordonnées des vecteurs exprimées dans une base orthonormée (rare en SII) \(\vec U \wedge \vec V = (U_2.

  1. Propriétés produit vectoriel de
  2. Propriétés produit vectoriel para

Propriétés Produit Vectoriel De

Nous en concluons donc que c'est une autre expression du déterminant: (u|v|w)=dét(u, v, w) Cela se voit d'ailleurs en utilisant les formes de calcul du produit scalaire et du produit vectoriel. On retrouve le développement classique d'un déterminant suivant les éléments d'une colonne. L'appliquette ci-dessous présente un vecteur u (bleu), un vecteur v jaune et un vecteur w rose. Les coordonnées des trois vecteurs apparaissent en bas ainsi que leur produit mixte. La valeur absolue du produit mixte est le volume du parallélotope construit sur les trois vecteurs et affiché en mode transparent. Cliquez sur le bouton pour générer des exemples. Le produit mixte est nul quand le parallélotope est aplati. Vérifiez les calculs quand ils paraissent simples.

Propriétés Produit Vectoriel Para

Définition: Soient et deux vecteurs de l'espace orienté. On définit leur produit vectoriel par: si et sont colinéaires. l'unique vecteur orthogonal à et, de norme et tel que la base soit directe sinon.

Espaces vectoriels fonctionnels

Sitemap | wwropasx.ru, 2024