Ensemble De Définition Exercice Corrigé

Qcm Ecume Des Jours
July 31, 2024

Déterminer l'ensemble de définition de la fonction $f$. Déterminer les limites aux bornes. En déduire l'existence d'asymptotes. Déterminer une équation de la tangente à la courbe $\mathscr{C}$ représentant la fonction $f$ au point d'abscisse $1$. Correction Exercice 3 La fonction $f$ est définie sur $]0;+\infty[$. $\lim\limits_{x \to 0^+} \ln x=-\infty$ et $\lim\limits_{x \to 0^+} x+1=1$ donc $\lim\limits_{x \to 0^+} f(x)=-\infty$ $f(x)=\dfrac{x}{x+1}\times \dfrac{\ln x}{x}$ D'après la limite des termes de plus haut degré, on a $\lim\limits_{x \to +\infty} \dfrac{x}{x+1}=\lim\limits_{x \to +\infty} \dfrac{x}{x}=1$ $\lim\limits_{x \to +\infty} \dfrac{\ln x}{x}=0$ Donc $\lim\limits_{x \to +\infty} f(x)=0$. Il y a donc deux asymptotes d'équation $x=0$ et $y=0$. Une équation de la tangente à $\mathscr{C}$ au point d'abscisse $1$ est: $y=f'(1)(x-1)+f(1)$ La fonction $f$ est dérivable sur $]0;+\infty[$ en tant que quotient de fonctions dérivables sur cet intervalle qui ne s'annule pas. $f'(x)=\dfrac{\dfrac{x+1}{x}-\ln(x)}{(x+1)^2}$ Ainsi $f'(1)=\dfrac{1}{2}$ et $f(1)=0$.

Ensemble De Définition Exercice Corrigé Au

MATHS-LYCEE Toggle navigation seconde chapitre 5 Fonctions: généralités exercice corrigé nº62 Fiche méthode Si cet exercice vous pose problème, nous vous conseillons de consulter la fiche méthhode. Recherche de l'ensemble de définition Déterminer l'ensemble de définition d'une fonction - connaissant l'expression de la fonction - à partir du tableau de variation - à partir du graphique infos: | 5-8mn | exercices semblables Si vous souhaitez vous entraîner un peu plus, nous vous conseillons ces exercices.

Une équation de la tangente est donc $y=\dfrac{x-1}{2}$. Exercice 4 On considère la fonction $f$ définie par $f(x)=\dfrac{1}{x\ln(x)}$. Déterminer les variations de la fonction $f$. Déterminer une équation de la tangente à la courbe $\mathscr{C}$ représentant la fonction $f$ au point d'abscisse $\e$. Correction Exercice 4 La fonction $\ln$ est définie sur $]0;+\infty[$ et s'annule en $1$. Donc la fonction $f$ est définie sur $]0;1[\cup]1;+\infty[$. La fonction $f$ est dérivable sur $]0;1[$ et sur $]1;+\infty[$ en tant que produit et quotient de fonctions dérivables dont le dénominateur ne s'annule pas. On va utiliser la dérivée de $\dfrac{1}{u}$ avec $u(x)=x\ln(x)$. $u'(x)=\ln(x)+\dfrac{x}{x}=\ln(x)+1$. Ainsi $f'(x)=-\dfrac{\ln(x)+1}{\left(x\ln(x)\right)^2}$ Le signe de $f'(x)$ dépend donc uniquement de celui de $-\left(\ln(x)+1\right)$ $\ln(x)+1>0 \ssi \ln(x) > -1 \ssi x>\e^{-1}$ Donc $f'(x)<0 sur \left]\e^{-1};1\right[\cup]1;+\infty[$. La fonction $f$ est donc strictement croissante sur l'intervalle $\left]0;\e^{-1}\right[$ et décroissante sur les intervalles $\left]\e^{-1};1\right[$ et $]1;+\infty[$.

Sitemap | wwropasx.ru, 2024